Abstract
Mixed model analyses via restricted maximum likelihood, fitting the so-called animal model, have become standard methodology for the estimation of genetic variances. Models involving multiple genetic variance components, due to different modes of gene action, are readily fitted. It is shown that likelihood-based calculations may provide insight into the quality of the resulting parameter estimates, and are directly applicable to the validation of experimental designs. This is illustrated for the example of a design suggested recently to estimate X-linked genetic variances. In particular, large sample variances and sampling correlations are demonstrated to provide an indication of 'problem' scenarios. Using simulation, it is shown that the profile likelihood function provides more appropriate estimates of confidence intervals than large sample variances. Examination of the likelihood function and its derivatives are recommended as part of the design stage of quantitative genetic experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.