Abstract
In high-dimensional data analysis, feature selection becomes one effective means for dimension reduction, which proceeds with parameter estimation. Concerning accuracy of selection and estimation, we study nonconvex constrained and regularized likelihoods in the presence of nuisance parameters. Theoretically, we show that constrained L 0 likelihood and its computational surrogate are optimal in that they achieve feature selection consistency and sharp parameter estimation, under one necessary condition required for any method to be selection consistent and to achieve sharp parameter estimation. It permits up to exponentially many candidate features. Computationally, we develop difference convex methods to implement the computational surrogate through prime and dual subproblems. These results establish a central role of L 0 constrained and regularized likelihoods in feature selection and parameter estimation involving selection. As applications of the general method and theory, we perform feature selection in linear regression and logistic regression, and estimate a precision matrix in Gaussian graphical models. In these situations, we gain a new theoretical insight and obtain favorable numerical results. Finally, we discuss an application to predict the metastasis status of breast cancer patients with their gene expression profiles. This article has online supplementary material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.