Abstract
This paper deals with the issue of testing hypotheses in the censored exponential regression model in small and moderate-sized samples. We focus on four tests, namely the Wald, likelihood ratio, score, and gradient tests. These tests rely on asymptotic results and are unreliable when the sample size is not large enough to guarantee a good agreement between the exact distribution of the test statistic under a null hypothesis and the corresponding reference chi-squared asymptotic distribution. Bartlett and Bartlett-type corrections typically attenuate the size distortion of the tests. These corrections are available in the literature for the likelihood ratio and score tests in the class of censored exponential regression models. A Bartlett-type correction for the gradient test is derived in this paper in this class of models. Additionally, we also propose bootstrap-based inferential improvements to the four tests mentioned. We numerically compare the tests through extensive Monte Carlo simulation experiments. The numerical results reveal that the corrected and bootstrapped tests exhibit type I error probability closer to the chosen nominal level with virtually no power loss. We also present an empirical application for illustrative purposes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.