Abstract
In this paper, likelihood-based inference and bias correction based on Firth’s approach are developed in the modified skew-t-normal (MStN) distribution. The latter model exhibits a greater flexibility than the modified skew-normal (MSN) distribution since it is able to model heavily skewed data and thick tails. In addition, the tails are controlled by the shape parameter and the degrees of freedom. We provide the density of this new distribution and present some of its more important properties including a general expression for the moments. The Fisher’s information matrix together with the observed matrix associated with the log-likelihood are also given. Furthermore, the non-singularity of the Fisher’s information matrix for the MStN model is demonstrated when the shape parameter is zero. As the MStN model presents an inferential problem in the shape parameter, Firth’s method for bias reduction was applied for the scalar case and for the location and scale case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.