Abstract
Inference on the association between a primary endpoint and features of longitudinal profiles of a continuous response is of central interest in medical and public health research. Joint models that represent the association through shared dependence of the primary and longitudinal data on random effects are increasingly popular; however, existing inferential methods may be inefficient or sensitive to assumptions on the random effects distribution. We consider a semiparametric joint model that makes only mild assumptions on this distribution and develop likelihood-based inference on the association and distribution, which offers improved performance relative to existing methods that is insensitive to the true random effects distribution. Moreover, the estimated distribution can reveal interesting population features, as we demonstrate for a study of the association between longitudinal hormone levels and bone status in peri-menopausal women.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.