Abstract

The V2O5/TiO2 (VTi) catalyst has been widely employed for the NH3 selective catalytic reduction (NH3-SCR) reaction, and sulfur (S) and alkali metals (K) were usually considered as poisons during this reaction. In this work, the synergistic effect of S and K over the VTi catalyst for the NH3-SCR reaction was analyzed and discussed. It is surprisingly observed that the synergistic effects of S and K exhibited a detoxification effect on the NH3-SCR reaction. That is, although the VTi catalyst exhibited moderate resistance to S poisoning and unsatisfactory resistance to K deactivation, the SCR activity was restored to close to fresh VTi when K and S coexisted. This detoxification effect also could occur between other alkali metals (e.g., Ca and Na) and sulfur. X-ray photoelectron spectroscopy and charge density difference studies both indicate that the introduction of K could significantly affect the electronic structure of V, but this toxic effect was recovered by the further addition of S because of the strong interaction between S and K. Therefore, this detoxification effect can occur in the practical reaction atmosphere, which alleviates the alkali metal poisoning of commercial catalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.