Abstract

We have examined the effect of like-charged residues on the conformation of an oligoalanine sequence. This was facilitated by circular dichroism (CD) and NMR spectroscopic and differential scanning calorimetric (DSC) measurements, and molecular dynamics calculations of the following three alanine-based peptides: Ac-K-(A)(5) -K-NH(2) (KAK5), Ac-K-(A)(4) -K-NH(2) (KAK4), Ac-K-(A)(3) -K-NH(2) (KAK3), where A and K denote alanine and lysine residues, respectively. Our earlier studies suggested that the presence of like-charged residues at the end of a short polypeptide chain composed of nonpolar residues can induce a chain reversal. For all three peptides, canonical molecular dynamics simulations with NMR-derived restraints demonstrate the presence of ensembles of structures with a tendency to form a chain reversal. The KAK3 peptide exhibits a bent shape with its ends close to each other, while KAK4 and KAK5 are more extended. In the KAK5 peptide, the lysine residues do not have any influence on each other and are very mobile. Nevertheless, the tendency to form a more or less pronounced chain reversal is observed and it seems to be stable in all three peptides. This chain reversal seems to be caused by screening of the nonpolar core from the solvent by the hydrated charged residues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.