Abstract

We report the use of l-aspartic acid chiral ionic hydrogen bonds to drive liquid-liquid phase separation (LLPS) and precision two-dimensional electrostatic self-assembly in photo-RAFT aqueous polymerization-induced self-assembly (photo-PISA). Homopolymerization can yield salt-resistant, 3 nm ultrafine fibril-structured 5 nm ultrathin lamellae via LLPS, a left-to-right-handed chirality transition, and a droplets-to-lamellae transition. Like-charge block copolymerization leads to supercharged yet identical fibril-structured ultrathin lamellae, also, via LLPS, the left-to-right chirality transition and the droplets-to-lamellae transition. Ultrafine structures maintain intactness upon the seeded polymerization of the oppositely charged monomer. This work demonstrates that amino acid chiral ionic hydrogen bonds are powerful for the precision synthesis of salt-resistant ultrathin membrane nanomaterials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call