Abstract
Manipulating two-dimensional (2D) magnetism in layered van der Waals (vdW) materials like FePS3 (FPS), with its wide-ranging applications in flexible spintronic devices, poses a persistent challenge. Through first-principles calculations, we have achieved reversible ferrimagnetic (FiM, FePS3 bilayer) ↔ antiferromagnetic (AFM, 1Li-intercalated FePS3 bilayer) ↔ ferromagnetic (FM, 2Li-intercalated FePS3 bilayer) phase transitions by using a Li-ion intercalation method. Intercalated Li ions significantly enhance the Fe-3d and S-3p hybridization and reduce the Fe-Fe, Li-Fe, Li-S, and Li-P bond lengths. The manipulation of 2D magnetism in Li-intercalated FPS bilayers can be attributed to the charge transfer between two FPS monolayers mediated by Li ions. Moreover, this study offers insights into the underlying physical mechanisms that govern the variations of electronic structures, 2D magnetism, magnetic anisotropy energy, and exchange couplings. Our reversible Li-ion intercalation permits straightforward de-intercalation using a two-step route, thereby reinstating the initial magnetic order of the FPS bilayer. Our purpose-designed FPS bilayer with different Li concentrations and robust exchange coupling not only enriches the Li-intercalation physics in the FPS system but also offers a general pathway for manipulating 2D magnetism in Fe-based vdW trisulfides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.