Abstract

Diagnostic information of a battery allows for its maximum utilization while avoiding unfavorable or even dangerous operations. Model-based approaches have been proposed to identify the state of health (SOH) related parameters in lithium-ion (Li-ion) batteries; however, high computational cost for solving optimization-based parameter identification makes these approaches difficult to be implemented in onboard applications. To address this issue, this paper proposes a machine learning-based approach using a neural network (NN) model for identifying electrode-level degradation of Li-ion batteries. For the diagnosis of electrode-level degradation (i.e., loss of active material (LAM) for each electrode and loss of lithium inventory (LLI)), electrochemical features are extracted from both incremental capacity (IC) curve and differential voltage (DV) curve. The developed NN model trained with the proposed electrochemical features shows strong potential in identifying each degradation mode accurately: the RMSE of all degradation modes is less than 0.1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.