Abstract

Li-ion battery electrode electronic properties, including bulk conductivity and contact resistance, are critical parameters affecting cell performance and fast-charge capability. Contact resistance between the coating and current collector is often the largest electronic resistance in an electrode and is affected by chemical, microstructural, and interfacial variations. Direct measurements of contact resistance and bulk conductivity have proven to be challenging. In their absence, a mechanical electrode peel test is often used to compare adhesion and electrical contact resistance. However, using a micro-flexible-surface probe, contact resistance can be directly determined. This work compares contact resistance and mechanical peel strength of multiple commercial-grade HE5050 and NCM523 cathodes and graphite and silicon anodes. It was found that peel strength correlates well with contact resistance in a carefully curated data set (p < 0.05) and in some situations may be a good metric to estimate electrical properties. However, there were distinct outliers in the data set, indicating that peel strength may not accurately reflect electrical properties when there is significant variation in electrode composition. These results illustrate the value of the micro-flexible-surface probe in quantifying contact resistance and bulk conductivity to better understand how battery composition and processing steps affect microstructure and resulting cell performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.