Abstract

Deep melt intrusion and melt-peridotite interaction may introduce small-scale heterogeneity in the MORB mantle. These processes generate pyroxenite-bearing veined mantle that represent potential mantle sources of oceanic basalts. Natural proxies of such veined mantle are very rare and our understanding of mechanisms governing the chemical modification of mantle peridotite by MORB-type pyroxenite emplacement is very limited. We report the results of detailed spatially-controlled chemical profiles in pyroxenite-peridotite associations from the Northern Apennine ophiolitic mantle sequences (External Liguride Units, Italy), and investigate the extent and mechanism driving the local modification of peridotite by the interaction with pyroxenite-derived melt. Pyroxenites occur as cm-thick layers parallel to mantle tectonite foliation and show diffuse orthopyroxene-rich reaction rims along the pyroxenite-peridotite contact. Relative to distal unmodified peridotites, wall-rock peridotites show i) modal orthopyroxene enrichment at the expense of olivine, ii) higher Al, Ca, Si contents and slightly lower XMg, iii) Al-richer spinel and lower-XMg pyroxenes. Clinopyroxenes from wall-rock peridotites exhibit variable LREE-MREE fractionation, always resulting in SmN/NdN ratios lower than distal peridotites. From the contact with pyroxenite layers, peridotite clinopyroxenes record a REE compositional gradient up to about 15cm marked by an overall REE increase away from the pyroxenite. Beyond 15cm, and up to 23cm, the MREE and HREE content decreases while the LREEs remain at nearly constant abundances. This REE gradient is well reproduced by a two-step numerical simulation of reactive melt percolation assuming variable amounts of olivine assimilation and pyroxene crystallization. Percolative reactive flow at decreasing melt mass and rather high instantaneous melt/peridotite ratio (initial porosity of 30%), combined with high extents of fractional crystallization (i.e. relatively low Ma/Mc ratio), accounts for the overall REE enrichment in the first 15cm. Change of melt-rock reaction regime, mostly determined by the drastic decrease of porosity (Φi=0.01) due to increasing crystallization rates, results in more efficient chemical buffering of the host peridotite on the HREE composition of the differentiated liquids through ion-exchange chromatographic-type processes, determining the observed increase of the LREE/HREE ratio. Emplacement of thin (cm-sized) pyroxenite veins by deep melt infiltration is able to metasomatize a much larger volume of the host peridotite. Hybrid mantle domains made by pyroxenite, metasomatized peridotite and unmodified peridotite potentially represent mantle sources of E-MORB. Results of this work stress the key role of melt-peridotite reactions in modifying the upwelling mantle prior to oceanic basalts production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.