Abstract

BackgroundLignocellulosic biomass is an attractive renewable resource for future liquid transport fuel. Efficient and cost-effective production of bioethanol from lignocellulosic biomass depends on the development of a suitable pretreatment system. The aim of this study is to investigate a new pretreatment method that is highly efficient and effective for downstream biocatalytic hydrolysis of various lignocellulosic biomass materials, which can accelerate bioethanol commercialization.ResultsThe optimal conditions for the hydrogen peroxide–acetic acid (HPAC) pretreatment were 80 °C, 2 h, and an equal volume mixture of H2O2 and CH3COOH. Compared to organo-solvent pretreatment under the same conditions, the HPAC pretreatment was more effective at increasing enzymatic digestibility. After HPAC treatment, the composition of the recovered solid was 74.0 % cellulose, 20.0 % hemicelluloses, and 0.9 % lignin. Notably, 97.2 % of the lignin was removed with HPAC pretreatment. Fermentation of the hydrolyzates by S. cerevisiae resulted in 412 mL ethanol kg−1 of biomass after 24 h, which was equivalent to 85.0 % of the maximum theoretical yield (based on the amount of glucose in the raw material).ConclusionThe newly developed HPAC pretreatment was highly effective for removing lignin from lignocellulosic cell walls, resulting in enhanced enzymatic accessibility of the substrate and more efficient cellulose hydrolysis. This pretreatment produced less amounts of fermentative inhibitory compounds. In addition, HPAC pretreatment enables year-round operations, maximizing utilization of lignocellulosic biomass from various plant sources.Electronic supplementary materialThe online version of this article (doi:10.1186/s13068-015-0419-4) contains supplementary material, which is available to authorized users.

Highlights

  • Lignocellulosic biomass is an attractive renewable resource for future liquid transport fuel

  • Pretreatment efficiency was evaluated based on observations of lignin removal, enzymatic hydrolysis, and fermentation of rice straw, pine wood, and oak wood

  • Fermentation of the hydrolyzates by S. cerevisiae resulted in 412 mL ethanol kg−1 of biomass after 24 h, which was equivalent to 85.0 % of the maximum theoretical yield

Read more

Summary

Introduction

Lignocellulosic biomass is an attractive renewable resource for future liquid transport fuel. Efficient and cost-effective production of bioethanol from lignocellulosic biomass depends on the development of a suitable pretreatment system. The aim of this study is to investigate a new pretreatment method that is highly efficient and effective for downstream biocatalytic hydrolysis of various lignocellulosic biomass materials, which can accelerate bioethanol commercialization. The largest proportion of petroleum consumption is for transportation, and bioenergy is clearly the only sustainable, low-cost, large-scale fuel production option [4,5,6,7]. The enzymatic hydrolysis of lignocellulosic biomass is influenced by several factors, including lignin and hemicelluloses contents, cellulose crystallinity, degree of. Selective lignin removal can minimize cellulose degradation and enhance enzymatic hydrolysis [15,16,17]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call