Abstract
The thermostabilization of lignin fibers used as precursors for carbon fibers was studied at temperatures up to 340 °C at various heating rates in the presence of air. The glass transition temperature ( T g) of the thermally treated lignin varied inversely with hydrogen content and was found to be independent of heating rate or oxidation temperature. A continuous heating transformation (CHT) diagram was constructed from kinetic data and used to predict the optimum heating rate for thermostabilization; a heating rate of 0.06 °C/min or lower was required in order to maintain T g > T during thermostabilization. Elemental and mass analyses show that carbon and hydrogen content decrease during air oxidation at constant heating rates. The hydrogen loss is sigmoidal, which is consistent with autocatalytic processes. A net increase in oxygen occurs up to 200–250 °C; at higher temperatures, oxygen is lost. Spectroscopic analyses revealed the oxidation of susceptible groups within the lignin macromolecule to ketones, phenols and possibly carboxylic acids in the early stage of the reaction; the later stage involving the loss of CO 2 and water and the formation of anhydrides and possibly esters. Slower heating rates favored oxygen gain and, consequently, higher glass transition temperatures ( T g) as opposed to faster heating rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.