Abstract

We have demonstrated in our earlier work that a few natural and synthetic estrogens can be effectively transformed through reactions mediated by lignin peroxidase (LiP). The behaviors of such reactions are variously influenced by the presence of natural organic matter (NOM) and/or veratryl alcohol (VA). Certain white rot fungi, e.g. Phanerochaete chrysosporium, produce VA as a secondary metabolite along with LiP in nature where NOM is ubiquitously present. Herein, we report a study on the products resulting from LiP-mediated oxidative coupling reactions of a representative estrogen, 17beta-estradiol (E2), and how the presence of NOM and/or VA impacts the formation and distribution of the products. A total of six products were found, and the major products appeared to be oligomers resulting from E2 coupling. Our experiments revealed that these products likely formed colloidal solids in water that can be removed via ultrafiltration or settled during ultracentrifugation. Such a colloidal nature of the products could have important implications in their treatability and environmental transport. In the presence of VA, the products tended to shift toward higher-degree of oligomers. When NOM was included in the reaction system, cross-coupling between E2 and NOM appeared to occur. Data obtained from E-SCREEN test confirmed that the estrogenicity of E2 can be effectively eliminated following sequential reactions mediated by LiP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call