Abstract

BackgroundAlthough conversion of low value but high-volume lignin by-product to its usable form is one of the determinant factors for building an economically feasible integrated lignocellulose biorefinery, it has been challenged by its structural complexity and inhomogeneity. We and others have shown that uniform lignin nanoparticles can be produced from a wide range of technical lignins, despite the varied lignocellulosic biomass and the pretreatment methods/conditions applied. This value-added nanostructure lignin enriched with multifunctional groups can be a promising versatile material platform for various downstream utilizations especially in the emerging nanocomposite fields.ResultsInspired by the story of successful production and application of nanocellulose biopolymer, two types of uniform lignin nanoparticles (LNPs) were prepared through self-assembling of deep eutectic solvent (DES) and ethanol-organosolv extracted technical lignins derived from a two-stage fractionation pretreatment approach, respectively. Both LPNs exhibited sphere morphology with unique core–shell nanostructure, where the DES–LNPs showed a more uniform particle size distribution. When incorporated into the traditional polymeric matrix such as poly(vinyl alcohol), these LPN products displayed great potential to formulate a transparent nanocomposite film with additional UV-shielding efficacy (reached ~80% at 400 nm with 4 wt% of LNPs) and antioxidant functionalities (reached ~160 μm mol Trolox g−1 with 4 wt% of LNPs). At the same time, the abundant phenolic hydroxyl groups on the shell of LNPs also provided good interfacial adhesion with PVA matrix through the formation of hydrogen bonding network, which further improved the mechanical and thermal performances of the fabricated LNPs/PVA nanocomposite films.ConclusionsBoth LNPs are excellent candidates for producing multifunctional polymer nanocomposites using facile technical route. The prepared transparent and flexible LNPs/PVA composite films with high UV-shielding efficacy, antioxidant activity, and biocompatibility are promising in the advanced packaging field, which potentially provides an additional high-value lignin product stream to the lignocellulose biorefinery. This study could open the door for the production and application of novel LNPs in the nascent bioeconomy.Graphical abstractLignin nanoparticle for transparent nanocomposite film with UV-shielding efficacy

Highlights

  • Conversion of low value but high-volume lignin by-product to its usable form is one of the determinant factors for building an economically feasible integrated lignocellulose biorefinery, it has been challenged by its structural complexity and inhomogeneity

  • Synthesis and characterization of lignin nanoparticles To achieve full utilization of lignocellulosic biomass and easy integration of LNPs production into current biorefinery concept, a two-step pretreatment strategy, mild steam pretreatment followed by solvent extraction, was employed to produce deep eutectic solvent (DES) and organosolv technical lignins from raw hardwood poplar while facilitating the conversion of cellulose/hemicellulose component to hexose/pentose sugar platform according to the previous reports [2, 21]

  • When the dynamic properties of the two lignin nanoparticle dispersions were further analyzed by dynamic light scattering (DLS), the deep eutectic solvent lignin nanoparticles (DLNPs) gave an average particle size of 195 nm with a polydispersity index (PDI) of 0.08, while the organosolv lignin nanoparticles (OLNPs) exhibited a similar average particle size (197 nm) but a much higher PDI (0.17) (Fig. 1a)

Read more

Summary

Results

Inspired by the story of successful production and application of nanocellulose biopolymer, two types of uniform lignin nanoparticles (LNPs) were prepared through self-assembling of deep eutectic solvent (DES) and ethanol-organosolv extracted technical lignins derived from a two-stage fractionation pretreatment approach, respectively. Both LPNs exhibited sphere morphology with unique core–shell nanostructure, where the DES–LNPs showed a more uniform particle size distribution. When incorporated into the traditional polymeric matrix such as poly(vinyl alcohol), these LPN products displayed great potential to formulate a transparent nanocomposite film with additional UV-shielding efficacy (reached ~80% at 400 nm with 4 wt% of LNPs) and antioxidant functionalities (reached ~160 μm mol Trolox ­g−1 with 4 wt% of LNPs). The abundant phenolic hydroxyl groups on the shell of LNPs provided good interfacial adhesion with PVA matrix through the formation of hydrogen bonding network, which further improved the mechanical and thermal performances of the fabricated LNPs/PVA nanocomposite films

Conclusions
Background
Results and discussion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call