Abstract

Lignin from wood is by far the largest source of bio-based aromatic raw material. Today a vast amount of lignin is processes and incinerated in kraft pulp mills around the world. One possible option to utilize the energy surplus in a modern kraft pulp mill is to extract lignin from black liquor. Precipitation of lignin is one important step in an extraction process. This study investigates how the molecular size and functional groups of lignin influenced the precipitation yield. Cross-flow filtration was applied to fractionate lignin with different molecular weights from a black liquor, precipitation studies was made on the different fractions. The precipitated lignin was characterized by GPC, HPAEC-PAD and NMR analysis. The results show that it was possible to obtain a more homogenous lignin by fractionation using cross-flow filtration. It was found that the molecular properties of kraft lignin, i.e. molecular weight and functional groups, influenced the yield of lignin precipitation: at the same precipitation condition, lignin fraction with higher molecular weight has higher precipitation yield. Lignin fraction with lower molecular weight contains less amount of carbohydrates and methoxyl groups but higher amount of phenolic groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.