Abstract
Resonance Raman (RR) spectroscopy of lignin peroxidase (ligninase, dairylpropane oxygenase) from the basidiomycete Phanerochaete chrysosporium suggests two different coordination states for the native ferric enzyme. Evidence for a high-spin, hexacoordinate ferric protoporphyrin IX was presented by Andersson et al. [Andersson, L. A., Renganathan, V., Chiu, A.A., Loehr, T. M., & Gold, M. H. (1985) J. Biol. Chem. 260, 6080-6087], whereas Kuila et al. [Kuila, D., Tien, M., Fee, J. A., & Ondrias, M. R. (1985) Biochemistry 24, 3394-3397] proposed a high-spin, pentacoordinate ferric system. Because the two RR spectral studies were performed at different temperatures, we explored the possibility that lignin peroxidase might exhibit temperature-dependent coordination-state equilibria. Resonance Raman results presented herein indicate that this hypothesis is indeed correct. At or near 25 degrees C, the ferric iron of lignin peroxidase is predominantly high spin, pentacoordinate; however, at less than or equal to 2 degrees C, the high-spin, hexacoordinate state dominates, as indicated by the frequencies of well-documented spin- and coordination-state marker bands for iron protoporphyrin IX. The temperature-dependent behavior of lignin peroxidase is thus similar to that of cytochrome c peroxidase (CCP). Furthermore, lignin peroxidase, like horseradish peroxidase (HRP) and CCP, clearly has a vacant coordination site trans to the native fifth ligand at ambient temperature. High-frequency RR spectra of compound II of lignin peroxidase are also presented. The observed shifts to higher frequency for both the oxidation-state marker band v4 and the spin- and coordination-state marker band v10 are similar to those reported for the compound II forms of HRP and lactoperoxidase and for ferryl myoglobin.(ABSTRACT TRUNCATED AT 250 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.