Abstract
In this work, facile fabrication of lignin nanoparticles (LNP)-based three-dimensional reduced graphene oxide hydrogel (rGO@LNP) has been demonstrated as a novel strategy for environmental applications. Herein, LNP were facilely synthesized from walnut shell waste through a direct chemical route. These LNP were incorporated into the continuous porous network of rGO network to fabricate rGO@LNP hydrogel. Characterization studies were carried out using various analytical techniques viz. scanning electron microscopy, Fourier transform IR spectroscopy, X-ray diffraction and thermogravimetric analysis. The efficiency of rGO@LNP hydrogel as adsorptive platform was evaluated by employing methylene blue and Pb2+ as model pollutants, whilst the effect of various experimental parameters was ascertained for optimal performance. Furthermore, Agar well diffusion method was used to check the antibacterial activities of the hydrogel using two bacterial pathogenic strains, i.e. Klebsiella pneumoniae (gram negative) and Enterococcus faecalis (gram positive). Results showed that after the inclusion of LNP into rGO hydrogel, there was a marked improvement in pollutant's uptake ability and compared to bare LNP and rGO, the composite hydrogel showed enhanced bactericidal effect. Overall, this approach is outstanding because of the synergy of functional properties of nano-lignin and rGO due to multi-interaction sites in the resulting hydrogel. The results presented herein support the application of rGO@LNP as innovative water filter material for scavenging broad spectrum pollutants and bactericidal properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.