Abstract

Lignocellulose polysaccharides are encrusted by lignin, which has long been considered an obstacle for efficient use of polysaccharides during processes such as pulping and bioethanol fermentation. Hence, numerous transgenic plant lines with reduced lignin contents have been generated, leading to more efficient enzymatic saccharification and forage digestion. However, lignin is also a potential feedstock for aromatic products and an important direct-combustion fuel, or a by-product fuel in polysaccharide utilization such as pulping and bioethanol production. For aromatic feedstock production, the complicated structure of lignin along with its occlusion within polysaccharide matrices makes lignin utilization intractable. To alleviate these difficulties, simplification of the lignin structure is an important breeding objective for future high-value utilization of lignin. In addition, higher lignin contents are beneficial for increasing heating values of lignocellulose, because lignin has much larger heating values than polysaccharides, cellulose and hemicelluloses. Structural modification of lignin may also be effective in increasing heating values of lignocellulose biomass, because the heating value of p-hydroxyphenyl lignin is highest, followed by those of guaiacyl lignin and of syringyl lignin in this order. Herein, recent developments for augmenting lignin contents and for lignin structural modifications, to improve its utilization by metabolic engineering, are outlined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call