Abstract

Hybrids and planting density are the main factors affecting maize lodging resistance. Here, we aimed to elucidate the mechanism of the regulation of maize lodging resistance by comparing two hybrids at various planting densities from the perspective of lignin metabolism. Our results showed that compared to lodging-susceptible hybrid Xundan 20 (XD20), lodging-resistant hybrid Denghai 605 (DH605) showed a lower center of gravity and culm morphological characteristics that contributed to the higher lodging resistance of this hybrid. Lignin content, activities of key lignin synthesis-related enzymes and G-, S- and H-type monomer contents were significantly higher in hybrid DH605 than in hybrid XD20. Stalk mechanical strength, lignin accumulation and enzyme activity decreased significantly with increasing planting density in the two hybrids. While G-type monomers first decreased with increasing planting density but then remained stable, S-type monomers showed a decreasing trend, and H-type monomers showed an increasing trend. Correlation analysis showed that lodging rate was significantly correlated with plant traits and lignin metabolism. Therefore, maize hybrids characterized by high lignin accumulation, high lignin synthesis-related activities, high S-type monomer content, low center of gravity, high stem puncture strength, high cortical thickness, and small vascular bundle area are more resistant to lodging. High planting densities reduce stalk lignin accumulation, relevant enzyme activities and mechanical strength, thereby, ultimately increasing the lodging rate significantly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call