Abstract

In recent years, flexible sensors constructed mainly from hydrogels have received increasing attention. However, conventional hydrogels need to be prepared by high-temperature or radiation-induced polymerization reactions, which limits their practical applications due to their suboptimal electrical conductivity and weak mechanical properties. In this paper, using sodium lignosulfonate as the raw material, a dynamic catechol-quinone redox system formed by lignin‑zinc ions was constructed to initiate rapid free radical polymerization of acrylamide (AM) monomer at room temperature. In addition, Deep eutectic solvent (DES) can form a strong hydrogen bonding network within the molecules and between the molecules of the hydrogel, resulting in a hydrogel with good tensile properties (hydrogel elongation at break of 727.19 %, breaking strength of 84.09 kPa), and provides the hydrogel with high electrical conductivity, anti-dehydration, anti-freezing, and anti-bacterial properties. Meanwhile, the addition of lignin also improved the adhesion and UV resistance of the hydrogel. This hydrogel assembled into a flexible sensor can sense various small and large amplitude movements such as nodding, smiling, frowning, etc., and has a wide range of applications in flexible sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.