Abstract
Lignin, one of the renewable constituents in natural plant biomasses, holds great potential as a sustainable source of functional carbon materials. Tremendous research efforts have been made on lignin-derived carbon electrodes for rechargeable batteries. However, lignin is considered as one of the most promising carbon precursors for the development of high-performance, low-cost porous carbon electrode materials for supercapacitor applications. Yet, these efforts have not been reviewed in detail in the current literature. This review, therefore, offers a basis for the utilization of lignin as a pivotal precursor for the synthesis of porous carbons for use in supercapacitor electrode applications. Lignin chemistry, the synthesis process of lignin-derived porous carbons, and future directions for developing better porous carbon electrode materials from lignin are systematically reviewed. Technological hurdles and approaches that should be prioritized in future research are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.