Abstract
So far, few animals with the ability of lignin degradation have been reported except termite and longicorn. In this study, it was found that the crude fiber and acid detergent lignin (ADL) of rice straw can be degraded dramatically higher by buffalo than those by cattle. In order to further study this ability of buffalo, the digestion of roughages in buffalo rumen was studied using rumen nylon bag experiment, scanning electron microscopy (SEM), and Van Soest fiber analysis. The SEM results showed that the degradation degree of rice straw was dramatically higher in buffalo than that in cattle. The digestibility of crude fiber was significantly higher in buffalo than that in cattle (P < 0.01). The digestibility of ADL, cellulose, hemicellulose, acid detergent, fiber, and neutral detergent fiber of rice straw in buffalo rumen was significantly higher than that in cattle (P < 0.05). The ADL degradation rate of rice straw in buffalo rumen was significantly higher than that in cattle rumen, indicating that buffalo was capable of utilizing lignin and had superior utilizing capability than cattle. It was observed that various roughages can be dramatically digested by buffalo rumen with the ranking of ADL degradation rate: peanut vine (15.04%) > rice silage > maize silage > rice straw > corn stover > wheat stalk > bract leaf > potato vine (7.22%), verifying that buffalo rumen possessed the ability to digest universal roughages. In conclusion, this study revealed that buffalo was more efficient in ADL degradation compared with cattle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.