Abstract

BackgroundBioconversion of plant biomass into biofuels and bio-products produces large amounts of lignin. The aromatic biopolymers need to be degraded before being converted into value-added bio-products. Microbes can be environment-friendly and efficiently degrade lignin. Compared to fungi, bacteria have some advantages in lignin degradation, including broad tolerance to pH, temperature, and oxygen and the toolkit for genetic manipulation.ResultsOur previous study isolated a novel ligninolytic bacterial strain Erwinia billingiae QL-Z3. Under optimized conditions, its rate of lignin degradation was 25.24% at 1.5 g/L lignin as the sole carbon source. Whole genome sequencing revealed 4556 genes in the genome of QL-Z3. Among 4428 protein-coding genes are 139 CAZyme genes, including 54 glycoside hydrolase (GH) and 16 auxiliary activity (AA) genes. In addition, 74 genes encoding extracellular enzymes are potentially involved in lignin degradation. Real-time PCR quantification demonstrated that the expression of potential ligninolytic genes were significantly induced by lignin. 8 knock-out mutants and complementary strains were constructed. Disruption of the gene for ELAC_205 (laccase) as well as EDYP_48 (Dyp-type peroxidase), ESOD_1236 (superoxide dismutase), EDIO_858 (dioxygenase), EMON_3330 (monooxygenase), or EMCAT_3587 (manganese catalase) significantly reduced the lignin-degrading activity of QL-Z3 by 47–69%. Heterologously expressed and purified enzymes further confirmed their role in lignin degradation. Fourier transform infrared spectroscopy (FTIR) results indicated that the lignin structure was damaged, the benzene ring structure and groups of macromolecules were opened, and the chemical bond was broken under the action of six enzymes encoded by genes. The abundant enzymatic metabolic products by EDYP_48, ELAC_205 and ESOD_1236 were systematically analyzed via liquid chromatography–mass spectrometry (LC–MS) analysis, and then provide a speculative pathway for lignin biodegradation. Finally, The activities of ligninolytic enzymes from fermentation supernatant, namely, LiP, MnP and Lac were 367.50 U/L, 839.50 U/L, and 219.00 U/L by orthogonal optimization.ConclusionsOur findings provide that QL-Z3 and its enzymes have the potential for industrial application and hold great promise for the bioconversion of lignin into bioproducts in lignin valorization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.