Abstract

Efficient wound healing is feasible when the dressing materials simultaneously target multiple factors causing wound chronicity, such as deleterious proteolytic and oxidative enzymes and bacterial infection. Herein, entirely bio-based multifunctional self-assembled hydrogels for wound healing were developed by simply mixing two biopolymers, thiolated hyaluronic acid (HA-SH) and silk fibroin (SF), with lignin-based nanoparticles (NPs) as both structural and functional elements. Sono-enzymatic lignin modification with natural phenolic compounds results in antibacterial and antioxidant phenolated lignin nanoparticles (PLN) capable of establishing multiple interactions with both polymers. These strong and dynamic polymer-NP interactions endow the hydrogels with self-healing and shear-thinning properties, and pH-responsive NP release is triggered at neutral to alkaline pH (7-9). Despite being a physically crosslinked hydrogel, the material was stable for at least 7 days, and its mechanical and functional properties can be tuned depending on the polymer and NP concentration. Furthermore, human skin cells in contact with the nanocomposite hydrogels for 7 days showed more than 93% viability, while the viability of clinically relevant Staphylococcus aureus and Pseudomonas aeruginosa was reduced by 99.7 and 99.0%, respectively. The hydrogels inhibited up to 52% of the activity of myeloperoxidase and matrix metalloproteinases, responsible for wound chronicity, and showed a strong antioxidant effect, which are crucial features promoting wound healing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.