Abstract
Each year, the pulp and paper industry produces approximately 50 million metric tons of lignin as waste, 95% of which is combusted or abandoned. Here, we report the use of lignin as a photocatalyst that forms H2O2 by O2 reduction and H2O oxidation under visible light. We investigated the photophysical and electronic properties of two lignin models, lignosulfonate and kraft lignin, by spectroscopic and photoelectrochemical analyses, and demonstrated the photoredox chemistry of lignin using these and other lignin models (for example, native-like cellulolytic enzyme lignin, artificial lignin dehydrogenation polymer and phenolic β-aryl ether-type lignin dimer). Furthermore, the integration of lignin and H2O2-dependent unspecific peroxygenases (UPOs) enabled the highly enantioselective oxyfunctionalization of various C–H bonds. The use of lignin photocatalysts solves a number of the challenges relating to the sustainable activation of UPOs, notably, eliminating the need for artificial electron donors and suppressing the HO·-mediated inactivation of UPOs. Thus, the lignin–UPO hybrid catalyst achieved a total turnover number of UPO of 81,000 for solar-powered biocatalytic oxyfunctionalization in photochemical platforms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.