Abstract

Mechanical adaptability, great wearability, application stability, and self-powered sensing characteristics are important requirements for hydrogel-based strain sensors. In this study, a novel double-layer hydrogel was fabricated with asymmetrical adhesion, strength, and electriferous properties. Wherein, the lignosulfonate sodium (LS)-borax mediated bottom hydrogel layer exhibits excellent softness (Young’s modulus: ~14.2 kPa) and skin-adhesion (Adhesive strength: ~18.7 kPa) while the quaternary hydroxyethyl cellulose (QHEC) mediated top hydrogel layer demonstrates great mechanical strength (Young’s modulus: ~101.3 kPa) and non-adhesive (Adhesive strength: ~2.2 kPa) properties. These complementary asymmetrical adhesion and strength properties endow the hydrogel-based sensor with exceptionally stable sensing performance and adaptive wearability; moreover, the lignocellulosic materials utilization plays a significant role in the designability, antibacterial and biodegradable properties. In addition, the synergy of negative LS (-) and positive QHEC (+) particles enables the double-layer hydrogel great self-powered sensing because of the directional movement of free ions initiated by the external mechanical stimulus. This study presents a hierarchical design idea of wearable electronics, which will have potential applications in many fields from wearable bioelectrodes to self-powered sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.