Abstract

Velvet ash (Fraxinus velutina Torr.) is an important wood and ornamental tree species. Emerald ash borer (EAB), Agrilus planipennis Fairmaire, is a major wood borer of velvet ash. The aim of this study was to identify the secondary metabolites of velvet ash involved in regulating the dominant bacterium group of EAB. The amount of lignans in the phloem of infested trees had increased by 290.96% because of A. planipennis infection. The addition of lignans to the artificial diet significantly reduced the weight of the larvae and decreased the dominant bacterial group in the larval midgut, such as Pseudomonadaceae, Xanthomonadaceae, and Enterobacteriaceae. The FvPLR1, a key gene for lignan synthesis, was obtained based on the phloem transcriptome of velvet ash. The expression of FvPLR1 in the phloem of the infested tree was significantly higher than that in the noninfested tree. Meanwhile, FvPLR1 silenced by virus-induced gene silencing showed that its expression level and the lignan content were decreased by 69.91% and 31.65%, respectively. Interestingly, silencing FvPLR1 induced alterations in the dominant bacteria group in the larvae, with the reverse trend in the lignan-fed treatment. The evidence showed that FvPLR1 was a positive regulator. The increasing synthesis of lignans leads to resistance improvement in velvet ash, which will provide comprehensive insights into the tree defense system to wood borer infestation. © 2021 Society of Chemical Industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.