Abstract

The potential for lightweighting of railway axles was investigated to primarily reduce the unsprung mass of rail vehicles. The reduction of unsprung mass equates to an overall lighter train, which will help to reduce track damage, energy consumption and total operating costs. Two approaches were considered for the lightweighting of railway axles, which include a hollow axle design and material substitution using advanced composite materials, to offer a more track-friendly design. The first approach showed that if the outer diameter of a hollow axle is increased by 30% over that of the solid axle diameter, a mass reduction of 56% is achievable for a hollow steel axle design. The second approach explored further mass savings that could be achieved through material substitution of a hollow axle. A systematic approach to material selection for the design requirements and constraints of a railway axle was considered to identify the candidate materials for the application. The optimum material identified was a ‘bismaleimide matrix + carbon fibre composite.’ A hollow axle manufactured from this composite material offered 64% savings in mass when compared to a hollow steel axle, and 84% savings in mass when compared to a solid steel axle. Estimates for the cost savings of lightweighting of an axle were quantified by utilising Network Rail’s variable usage charge calculator, to assess the track access charge savings that can be achieved. For the scenario described in this paper, a potential £5.58 million per year could be saved for an intercity 220/M Voyager train, in terms of variable usage charges, over the entire fleet of 34 trains (four carriages per train) by implementing hollow composite axles. This is an example of a costing approach to support the decision making of lightweighting of rail vehicles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call