Abstract

PurposeThe purpose of this study is to achieve the low-cost, light-weight and compact antenna array with wide bandwidth and low side lobe levels for synthetic aperture radar (SAR) applications in Ku frequency band.Design/methodology/approachA compact design of a rectangular microstrip patch antenna array using multilayered dielectric structure is presented in Ku-band for advanced broadband SAR systems. In this design, stepped pins are used to connect the microstrip feed lines to the radiating patches.FindingsThe simulation and fabrication results of the multilayered antenna and a 1×16-element linear array of the antenna with Taylor amplitude distribution in the feeding network are presented. The antenna element has a 10-dB impedance bandwidth of more than 26%, and the linear array shows reduction in bandwidth percentage (about 15.4%). Thanks to Taylor amplitude tapering, the side lobe level (SLL) of the array is lower than −24 dB. The maximum measured gains of the antenna element and the linear array are 7 and 19.2 dBi at the center frequency, respectively.Originality/valueIn the communication systems, a high gain narrow beamwidth radiation pattern achieved by an array of multiple antenna elements with optimized spacing is a solution to overcome the path loss, atmospheric loss, polarization loss, etc. Also, wideband characteristics and compact size are desirable in satellite and SAR systems. This paper provides the combination of these features by microstrip structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.