Abstract

Lightweight absorption-dominated electromagnetic interference (EMI) shielding materials are more attractive than conventional reflection-dominated counterparts because they minimize the twice pollution of the reflected electromagnetic (EM) wave. Here, porous Ti2CT x MXene/poly(vinyl alcohol) composite foams constructed by few-layered Ti2CT x (f-Ti2CT x) MXene and poly(vinyl alcohol) (PVA) are fabricated via a facile freeze-drying method. As superior EMI shielding materials, their calculated specific shielding effectiveness reaches up to 5136 dB cm2 g-1 with an ultralow filler content of only 0.15 vol % and reflection effectiveness (SER) of less than 2 dB, representing the excellent absorption-dominated shielding performance. Contrast experiment reveals that the good impedance matching derived from the multiple porous structures, internal reflection, and polarization effect (dipole and interfacial polarization) plays a synergistic role in the improved absorption efficiency and superior EMI shielding performance. Consequently, this work provides a promising MXene-based EMI shielding candidate with lightweight and high strength features.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call