Abstract

Demand has increased for high reliability mobile power systems for space and aerial vehicles in military, scientific, and commercial applications. Batteries have traditionally supplied power in these applications, but the desire to extend mission duration and expand vehicle capabilities would require an energy density increase that is difficult for batteries to achieve. The use of pure hydrogen and oxygen reactants with high efficiency membrane electrode assemblies and novel design concepts for the fuel cell stack bipolar plates and balance of plant (BOP) components has the potential to meet the desired system energy density. This paper reviews subsystem and integrated testing of a lightweight PEM fuel cell system design for implementation into an aerial vehicle or space mission. The PEM fuel cell stack is designed for optimum efficiency at 2 kWe of power during standard operation with the capacity to provide over 5 kWe of continuous power. The passive flow control and water management subsystems provide the gas flow and humidification necessary for efficient operation and remove excess water produced by the stack under all operating regimes. Work is in progress to test the fully integrated system under expected operating conditions for potential lightweight PEMFC applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call