Abstract

Modern key-value stores, object stores, Internet proxy caches, and Content Delivery Networks (CDN) often manage objects of diverse sizes, e.g., blobs, video files of different lengths, images with varying resolutions, and small documents. In such workloads, size-aware cache policies outperform size-oblivious algorithms. Unfortunately, existing size-aware algorithms tend to be overly complicated and computationally expensive. Our work follows a more approachable pattern; we extend the prevalent (size-oblivious) TinyLFU cache admission policy to handle variable-sized items. Implementing our approach inside two popular caching libraries only requires minor changes. We show that our algorithms yield competitive or better hit-ratios and byte hit-ratios compared to the state-of-the-art size-aware algorithms such as AdaptSize, LHD, LRB, and GDSF. Further, a runtime comparison indicates that our implementation is faster by up to 3× compared to the best alternative, i.e., it imposes a much lower CPU overhead.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.