ACM Transactions on Storage | VOL. 18

Lightweight Robust Size Aware Cache Management

Publication Date Aug 31, 2022


Modern key-value stores, object stores, Internet proxy caches, and Content Delivery Networks (CDN) often manage objects of diverse sizes, e.g., blobs, video files of different lengths, images with varying resolutions, and small documents. In such workloads, size-aware cache policies outperform size-oblivious algorithms. Unfortunately, existing size-aware algorithms tend to be overly complicated and computationally expensive. Our work follows a more approachable pattern; we extend the prevalent (size-oblivious) TinyLFU cache admission policy to handle variable-sized items. Implementing our approach inside two popular caching libraries only requires minor changes. We show that our algorithms yield competitive or better hit-ratios and byte hit-ratios compared to the state-of-the-art size-aware algorithms such as AdaptSize, LHD, LRB, and GDSF. Further, a runtime comparison indicates that our implementation is faster by up to 3× compared to the best alternative, i.e., it imposes a much lower CPU overhead.


Content Delivery Networks Object Stores Minor Changes Cache Admission Policy Aware Cache Management Cache Admission Popular Caching Aware Cache Proxy Caches CPU Overhead

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between Sep 19, 2022 to Sep 25, 2022

R DiscoverySep 26, 2022
R DiscoveryArticles Included:  5

Disaster Prevention and Management ISSN: 0965-3562 Article publication date: 20 September 2022 This paper applies the theory of cascading, interconnec...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19


Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.