Abstract
The number of malicious Android apps has been and continues to increase rapidly. These malware can damage or alter other files or settings, install additional applications, obfuscate their behaviors, propagate quickly, and so on. To identify and handle such malware, a security analyst can significantly benefit from identifying the family to which a malicious app belongs rather than only detecting if an app is malicious. To address these challenges, we present a novel machine learning-based Android malware detection and family-identification approach, RevealDroid, that operates without the need to perform complex program analyses or extract large sets of features. RevealDroid's selected features leverage categorized Android API usage, reflection-based features, and features from native binaries of apps. We assess RevealDroid for accuracy, efficiency, and obfuscation resilience using a large dataset consisting of more than 54,000 malicious and benign apps. Our experiments show that RevealDroid achieves an accuracy of 98% in detection of malware and an accuracy of 95% in determination of their families. We further demonstrate RevealDroid's superiority against state-of-the-art approaches. [URL of original paper: https://dl.acm.org/citation.cfm?id=3162625]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.