Abstract

The color features of strawberries at different growth stages vary slightly and occluded during growth. To address these challenges, this study proposes a lightweight multi-stage detection method based on You Only Look Once version 7-tiny (YOLOv7-tiny) for strawberries in complex environments. First, the size of the model is reduced by replacing the ordinary convolution of the neck network used for deep feature extraction and fusion with lightweight Ghost convolution. Then, by introducing the Coordinate Attention (CA) module, the model’s focus on the target detection area is enhanced, thereby improving the detection accuracy of strawberries. The Wise Intersection over Union (WIoU) loss function is integrated to accelerate model convergence and enhance the recognition accuracy of occluded targets. The advanced Adaptive nesterov momentum algorithm (Adan) is utilized for gradient descent, processing averaged sample data. Additionally, considering the small size of strawberry targets, a detection head specifically for small targets is added, performing detection on a 160 × 160 × 64 feature map, which significantly improves the detection performance for small strawberries. Experimental results demonstrate that the improved network model achieves an mAP@0.5 of 88.2% for multi-stage strawberry detection, which is 2.44% higher than the original YOLOv7-tiny algorithm. Meanwhile, GFLOPs and Params are reduced by 1.54% and 12.10%, respectively. In practical detection and inference, the improved model outperforms current mainstream target detection models, enabling a quicker and more accurate identification of strawberries at different growth stages, thus providing technical support for intelligent strawberry picking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.