Abstract
Text analytics systems often rely heavily on detecting and linking entity mentions in documents to knowledge bases for downstream applications such as sentiment analysis, question answering and recommender systems. A major challenge for this task is to be able to accurately detect entities in new languages with limited labeled resources. In this paper we present an accurate and lightweight, multilingual named entity recognition (NER) and linking (NEL) system. The contributions of this paper are three-fold: 1) Lightweight named entity recognition with competitive accuracy; 2) Candidate entity retrieval that uses search click-log data and entity embeddings to achieve high precision with a low memory footprint; and 3) efficient entity disambiguation. Our system achieves state-of-the-art performance on TAC KBP 2013 multilingual data and on English AIDA CONLL data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.