Abstract

This paper presents results of an experimental study on the use of rigid polyurethane foam wastes with cement-based mixtures to produce lightweight mortar. Several mortar grades were obtained by mixing cement with different amounts of polyurethane, aggregate and water. Dosages were varied to replace aggregates with recycled polyurethane, while the amount of water was optimized to obtain good workability. Rigid polyurethane was ground to particle sizes of less than 4 mm prior to use as an aggregate substitute. The characteristics of the test specimens were defined and they were tested in both a fresh and a hardened state. Results show that an increase in the amount of polyurethane affects the mortar, decreasing its density and mechanical properties while increasing its workability, permeability, and occluded air content. These results confirm that mortar produced with recycled polyurethane is comparable to lightweight mortar made with traditional materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.