Abstract
In this article, we present a study about classification methods for large-scale categorization of product offers on e-shopping web sites. We present a study about the performance of previously proposed approaches and deployed a probabilistic approach to model the classification problem. We also studied an alternative way of modeling information about the description of product offers and investigated the usage of price and store of product offers as features adopted in the classification process. Our experiments used two collections of over a million product offers previously categorized by human editors and taxonomies of hundreds of categories from a real e-shopping web site. In these experiments, our method achieved an improvement of up to 9% in the quality of the categorization in comparison with the best baseline we have found. © 2011 Wiley Periodicals, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the American Society for Information Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.