Abstract

Electromagnetic interference (EMI) and pollution triggered by electromagnetic waves are becoming a severe issue with the rapid development of various e-devices. Developing low-density and high-efficiency electromagnetic shielding materials is of great importance. Carbon aerogel materials have received worldwide attention due to their significant electromagnetic interference shielding properties and physicochemical stability. Herein, lightweight hafnium carbide nanowire (HfCnw)-carbon fiber (CF)/graphene aerogel (GA) composites with excellent electromagnetic shielding performance were fabricated by successively introducing CF via hydrothermal process, pyrolytic carbon (PyC) coating via chemical vapor infiltration (CVI), and HfCnw via catalytic chemical vapor deposition (CCVD) into GA. It was found that the electrical conductivity of the HfCnw-CF/GA composites with the HfCnw growth time of 4 h reached 94.0 S/cm, which was far higher than 1.1 S/cm of pristine GA and 2.7 S/cm of the CF/GA composites. The EMI shielding effectiveness (SE) of the HfCnw-CF/GA composites was as high as 66.4 dB in the X-band, which was 3 times that (25.4 dB) for GA and 1.5 times that (45.8 dB) for the CF/GA composites. The EMI shielding performance of the HfCnw-CF/GA composites was improved mainly due to the enhanced multiple reflection loss, conductance loss, and interfacial polarization loss. Moreover, the HfCnw-CF/GA composites had a specific SE (SSE) value of 364.1 dB cm3/g, which exhibits good application prospects in the EMI field to meet the needs for light weight and high SE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.