Abstract

Safety helmet wearing plays a major role in protecting the safety of workers in industry and construction, so a real-time helmet wearing detection technology is very necessary. This paper proposes an improved YOLOv4 algorithm to achieve real-time and efficient safety helmet wearing detection. The improved YOLOv4 algorithm adopts a lightweight network PP-LCNet as the backbone network and uses deepwise separable convolution to decrease the model parameters. Besides, the coordinate attention mechanism module is embedded in the three output feature layers of the backbone network to enhance the feature information, and an improved feature fusion structure is designed to fuse the target information. In terms of the loss function, we use a new SIoU loss function that fuses directional information to increase detection precision. The experimental findings demonstrate that the improved YOLOv4 algorithm achieves an accuracy of 92.98%, a model size of 41.88 M, and a detection speed of 43.23 pictures/s. Compared with the original YOLOv4, the accuracy increases by 0.52%, the model size decreases by about 83%, and the detection speed increases by 88%. Compared with other existing methods, it performs better in terms of precision and speed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.