Abstract

The precast concrete elements in the construction of buildings are increasingly used due to their better quality control, constructive speed, reduction of the number of workers and less waste of resources compared to conventional construction; for wall applications, to these advantages, the design to ensure thermal comfort requires the improvement of the low thermal insulation of conventional concrete panels. The use of materials with lower thermal conductivity such as Expanded PolyStyrene Beads (EPSB) in lightweight concrete for the construction of precast panels in housing, contributes to improve thermal insulation and the saving operational energy during its operation phase, because the aggregate has a small size, low density and thermal conductivity; applied in higher volumes in concrete, reduces indoor heat loss in cold climates and indoor heat gain in warm climates in housing. The purpose of this research is to study the behavior of lightweight concrete with EPSB for 16%, 26% and 36% addition and evaluate the air-dry density, compressive strength, thermal conductivity, relationship between air-dry density with compressive strength and thermal conductivity. The results indicate that the higher the percentage of EPSB the air-dry density, compressive strength and thermal conductivity decrease; the relationships between air-dry density with compressive strength and thermal conductivity follow a linear trend and are similar.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.