Abstract

High-efficient recycling of solid waste from the semiconductor or textile dyeing industry has been a challenge since these industrial waste not only brings a heavy burden to enterprises but also seriously affects our ecological environment. Here, a feasible method is proposed to recycle this solid waste by transferring it into high value-added ceramsites. They were prepared by using the third grade sand of cutting silicon (TGSCS) and textile dyeing sludge (TDS) as raw materials and composed mainly of SiO2–Al2O3. Through systematic analysis of the experimental results, it was concluded that the optimized ratios of the TGSCS and the TDS should range from 1:1.5 to 1:3, while the sintering temperature should be around 1150[Formula: see text]C. These lightweight ceramsites can have excellent properties of the cylinder compressive strength of 4.65 MPa and bulk density of 477 kg/m3. The potential expansion mechanism was thought to be related to both TGSCS and TDS as they reacted with Fe2O3 impurity to form CO2/CO gases. This work is to prepare lightweight ceramsites and to recycle solid waste.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call