Abstract

With the rapid development of the electronic industry, undesired electromagnetic (EM) wave radiations and energy shortage crisis pose a great threat to human health, electric devices, and environmental security. Herein, we reported the fabrication of a MXene Ti3C2Tx/carboxymethyl cellulose (MXene/CMC) aerogel as an energy harvester, which can be used for not only harvesting external mechanical energy but also protecting human health from EM wave radiations. An ideal electromagnetic interference (EMI) shielding efficiency of 52.15, 60.31, and 80.36 dB could be achieved in X, Ku, and K bands, respectively. Furthermore, the harvest mechanical energy property of MXene/CMC aerogel-based triboelectric nanogenerator (TENG) was also studied, the peak-to-peak open circuit voltage and short circuit current reached 54.37 V and 1.22 μA, respectively. With the optimal external resistance of 18 MΩ, the power density of the MXene/CMC aerogel-based TENG exhibited 402.94 mW m−2. It could easily illuminate the commercial light-emitting diode with a bare finger continuously contacting/separating mode. In addition, the MXene/CMC aerogel-based TENG was utilized to monitor human health by attaching MXene/CMC aerogel-based TENG on the differernt huamna dody parts as the self-powered sensor. Therefore, the developed MXene/CMC aerogel in this work presents bright potentials in the fields of harvesting energy, which can detect and protect human health from EM radiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.