Abstract
To resist the increasingly serious radiation pollution, there is a great need for the fabrication of high-performance electromagnetic interference (EMI) shielding materials. However, it is a great challenge to prepare EMI shielding materials with high efficiency, lightweight, and flexibility for practical applications. Here, we demonstrate an efficient and facile approach to prepare freestanding, lightweight, and flexible crosslinking polyacrylonitrile (CPAN) nanofiber (NF)/metal nanoparticle (MNP) hybrid membranes with a high efficiency and reasonable strength via electrospinning followed by an electroless deposition process. In contrast to a Cu- and Ni-decorated CPAN NF membrane, the resultant CPAN NF/Ag nanoparticle (NP) hybrid membrane exhibited much better electrical conductivity. Furthermore, a superior EMI shielding effectiveness of ≈90 dB is achieved for the lightweight CPAN NF/Ag NP hybrid membrane (53 µm), which is superior to pure metal and most of the synthesized EMI shielding materials. The excellent EMI shielding efficiency is attributed to the high conductivity of MNPs and favorable porous structure in the hybrid NF membrane. In addition, the resultant CPAN NF/MNP hybrid membrane shows a reasonable mechanical strength and excellent flexibility. The prepared polymer NF/MNP hybrid membrane shows promising applications in smart portable and wearable electronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: NPG Asia Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.