Abstract

Wearable devices have become increasingly popular in recent years, and they offer a great opportunity for sensor-based continuous human activity recognition in real-world scenarios. However, one of the major challenges is their limited battery life. In this study, we propose an energy-aware human activity recognition framework for wearable devices based on a lightweight accurate trigger. The trigger acts as a binary classifier capable of recognizing, with maximum accuracy, the presence or absence of one of the interesting activities in the real-time input signal and it is responsible for starting the energy-intensive classification procedure only when needed. The measurement results conducted on a real wearable device show that the proposed approach can reduce energy consumption by up to 95% in realistic case studies, with a cost of performance deterioration of at most 1% or 2% compared to the traditional energy-intensive classification strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call