Abstract

A nanogenerator, as a self-powered system, can operate without an external power supply for energy harvesting, signal processing, and active sensing. Here, near-infrared (NIR) photothermal triggered pyroelectric nanogenerators based on pn-junctions are demonstrated in a p-Si/n-ZnO nanowire (NW) heterostructure for self-powered NIR photosensing. The pyroelectric-polarization potential (pyro-potential) induced within wurtzite ZnO NWs couples with the built-in electric field of the pn-junction. At the moment of turning on or off the NIR illumination, external current flow is induced by the time-varying internal electric field of the pn-heterostructure, which enables a bias-free operation of the photodetectors (PDs). The NIR PD exhibits a high on/off photocurrent ratio up to 107 and a fast photoresponse component with a rise time of 15 μs and a fall time of 21 μs. This work provides an unconventional strategy to achieve active NIR sensing, which may find promising applications in biological imaging, optoelectronic communications, and optothermal detections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.