Abstract

Alzheimer's disease is the most common progressive neurodegenerative disease, affecting more than 13% of the population over age 65. Over the last decades, researchers have focused on understanding the mechanism of amyloid formation, the hallmark of various amyloid diseases including Alzheimer's and Parkinson's. In this paper, we successfully demonstrate the dissociation of β-Amyloid (Aβ) aggregates into small, less-amyloidic fragments by photoexcited [Ru(bpy)3]2+ through destabilization of β-sheet secondary structure. We validated the light-triggered dissociation of amyloid structure using multiple analytical tools. Furthermore, we confirmed that photoexcited [Ru(bpy)3]2+ reduces cytotoxicity of Aβ aggregates. Our work should open a new horizon in the study of Alzheimer's amyloid aggregation by showing the potential of photoexcited dye molecules as an alternative therapeutic strategy for treating Alzheimer's disease in future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call