Abstract

ABSTRACTIntroduction: Frequent intravitreal injections are currently the preferred treatment method for diseases affecting the posterior segment of the eye. However, these repeated injections have been associated with pain, risk of infection, hemorrhages, retinal detachment and high treatment costs. To overcome these limitations, light-responsive in situ forming injectable implants (ISFIs) may emerge as novel systems providing site-specific controlled drug delivery to the retinal tissues with great accuracy, safety, minimal invasiveness and high cost efficiency.Area covered: Complex ocular barriers, routes for drug delivery, types of injectable implants, ocular application of light and benefits of light-responsive systems are discussed with regards to challenges and strategies employed for effective drug delivery to the posterior segment of the eye. In particular, we have highlighted photoresponsive moieties, photopolymerization mechanisms and different development strategies with their limitations as well as recent advancements in the field.Expert opinion: Biodegradable light-responsive ISFIs are promising drug delivery systems that have shown a high degree of biocompatibility with sustained drug release in a number of applications. However, their use in intravitreal drug delivery is still in the very early stages. Issues related to the biocompatibility of the photoinitiator and the elimination of photo-degraded by-products from the ocular tissues need careful consideration, not only from a chemistry standpoint, but also from a biological perspective to improve the suitability of these systems for clinical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.