Abstract

Photoautotrophic organisms depend on the ambient light for their growth and viability; therefore, it is not surprising that they utilize sophisticated light-regulated signaling systems to acclimate to variable light environments. Cyanobacteria are important primary producers that perform oxygenic photosynthesis in various environmental niches. Cyanobacterial genomes encode multiple and diverse photoreceptors which are often connected to second messenger signaling networks. Here, we review the current knowledge of light-regulated second messenger signaling in cyanobacteria, focusing on two examples: cyclic di-GMP signaling systems for regulation of Thermosynechococcus sessility and Synechocystis motility. We also briefly introduce the present research on various nucleotide second messenger molecules, such as cAMP, cGMP, cyclic di-GMP, cyclic di-AMP, and the alarmone (p)ppGpp in cyanobacteria. In natural conditions, incident light contains a lot of different information on wavelength, intensity, and time scales. Further understanding of second messenger signaling in cyanobacteria will uncover how cyanobacteria extract the crucial information from their light environment to regulate cellular responses of ecophysiological importance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.